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ABSTRACT

Motivation: Despite their success in identifying genes that affect
complex disease or traits, current genome-wide association studies
(GWASs) based on a single SNP analysis are too simple to elucidate
a comprehensive picture of the genetic architecture of phenotypes.
A simultaneous analysis of a large number of SNPs, although
statistically challenging, especially with a small number of samples,
is crucial for genetic modeling.
Method: We propose a two-stage procedure for multi-SNP modeling
and analysis in GWASs, by first producing a ‘preconditioned’
response variable using a supervised principle component analysis
and then formulating Bayesian lasso to select a subset of significant
SNPs. The Bayesian lasso is implemented with a hierarchical model,
in which scale mixtures of normal are used as prior distributions for
the genetic effects and exponential priors are considered for their
variances, and then solved by using the Markov chain Monte Carlo
(MCMC) algorithm. Our approach obviates the choice of the lasso
parameter by imposing a diffuse hyperprior on it and estimating it
along with other parameters and is particularly powerful for selecting
the most relevant SNPs for GWASs, where the number of predictors
exceeds the number of observations.
Results: The new approach was examined through a simulation
study. By using the approach to analyze a real dataset from the
Framingham Heart Study, we detected several significant genes that
are associated with body mass index (BMI). Our findings support the
previous results about BMI-related SNPs and, meanwhile, gain new
insights into the genetic control of this trait.
Availability: The computer code for the approach developed is
available at Penn State Center for Statistical Genetics web site,
http://statgen.psu.edu.
Contact: rwu@hes.hmc.psu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Recent genotyping technologies allow the fast and accurate
collection of genotype data throughout the entire genome for
many subjects. By genome-wide association studies (GWASs), the
genetic variants associated with a complex disease or trait, their
chromosomal distribution and individual effects, can be identified.
GWASs are based on either case–control cohorts to test the
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associations between SNPs and diseases or population cohorts to
estimate genetic effects of SNPs on traits. In both cases, there are
hundreds of thousands of SNPs genotyped on samples involving
thousands of subjects. This typical problem, having the number
of predictors far exceeding the number of observations, makes
it impossible to analyze the data using traditional multivariate
regression. In current GWASs, simple univariate linear regression
that analyzes one SNP at a time is usually used and, by adjusting for
multiple comparisons, the significance levels of the detected genes
are then calculated (McCarthy et al., 2008).

These single SNP-based GWASs have been instrumental for
reproducibly detecting significants genes for various complex
diseases or traits (Donnelly, 2008). However, such strategies have
three major disadvantages, limiting the future applications of
GWAS. First, because most complex traits are polygenic, a single
SNP analysis can only detect a very small portion of genetic variation
and, also, may not be powerful for identifying weaker associations
(Hoggart et al., 2008). Second, different genes may interact with
each other to form a complex network of genetic interactions,
which cannot be characterized from a single SNP analysis. Third,
many GWASs analyze genetic associations separately for different
environments, such as males and females, and then make an across-
environment comparison in genetic effects. This analysis is neither
powerful nor precise for the identification of gene–environment
interactions. Because of these limitations, many authors have
developed various approaches for simultaneously analyzing multiple
SNPs for GWASs (Logsdon et al., 2010; Wu et al., 2009; Yang et al.,
2010), although most approaches focus on case–control cohorts.

There is a daunting need on the development of a variable
selection model to identify SNPs with significant effects on
quantitative traits in population cohorts and estimate all selected
predictors simultaneously. Traditionally, a subset of predictors in
a regression model is obtained by forward selection, backward
elimination and stepwise selection, but these approaches are
computationally expensive and unstable even when the number of
predictors is not large. Recently, alternative approaches have been
developed, including ridge regression, bridge regression (Frank and
Friedman, 1993), least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1996), elastic net (Zou and Hastie, 2005) and
the smoothly clipped absolute deviation (SCAD) penalty (Fan and
Li, 2001). For the number of variables much larger than that of
subjects, as commonly seen in GWASs, Fan and Lv (2008) proposed
a two-stage procedure for variable selection by first suppressing
the high dimensionality of response into its low-dimensional
representation and then finding a subset of predictors that can predict
the suppressed response. A similar two-stage approach was also
developed by Paul et al. (2008).
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In this article, we for the first time integrate Paul et al.’s
preconditioning procedure into LASSO to develop a two-stage
strategy for identifying important SNPs in GWASs. In step one, we
find a linear combination of predictors that are strongly correlated
with the response by a supervised principle component analysis
and get a consistent ‘preconditioned’ estimate of response variable.
In step two, we implement the Bayesian lasso (Park and Casella,
2008) for variable selection based on the ‘preconditioned’ response
that mitigates the observational noise. The Markov chain Monte
Carlo (MCMC) algorithm is used to estimate all the parameters.
The Bayesian hierarchical model is implemented to control an issue
of over-fitting that arises when too many associations are included.
Our model shows a great flexibility to fit many SNPs and many
covariates at the same time. The statistical properties of the model
were tested through simulation studies. We used a real GWAS dataset
from the Framingham Heart Study (FHS) to validate the usefulness
and utilization of the new model.

2 BAYESIAN GWAS MODEL

2.1 Preconditioning
When the number of predictors far exceeds the number of
observations, preconditioning via a supervised principal component
analysis is recommended to reduce the effect of observational noise
on model selection (Paul et al., 2008). In a GWAS of n subjects, we
express a response variable y (assumed to be normally distributed)
as a function of p SNPs genotyped throughout the entire genome
using a linear model

y=Wb+ε, (1)

where W = (w1,...,wn)T is a (n×p) design matrix, b= (b1,...,bp)T

is the vector of regression coefficients and ε∼Nn(0,σ2In) is the
residual error.

The design matrix is reduced to one that consists of only
those predictors whose estimated regression coefficients exceed a
threshold θ in the absolute value. Thus, the reduced design matrix
Wreduced consists of the j′-th column of W , where j′ ∈{j : |b̂j|>θ}.
The principal components of Wreduced, called supervised principal
components, are computed. The first m supervised principal
components can serve as independent variables in a linear regression
model, from which a consistent predictor ỹ of the true response
is obtained. In practice, we select θ by 5-fold cross-validation.
Since only the first few components are useful for prediction, in the
following examples we consider the first three principal components.
Next, a standard variable selection procedure will be conducted for
the preconditioned response variable ỹ.

2.2 Lasso penalized regression
Given phenotypical measurements and genotype information, we
could obtain the preconditioned response ỹ based on the generic form
of linear regression (1). However in GWASs, a number of covariates,
which are either discrete or continuous, may be measured for each
subject. In order to estimate genetic effects precisely by adjusting for
these covariates, a GWAS model that takes into account the effects
of important covariates would be more appropriate. Therefore, we
describe the preconditioned value ỹi of a quantitative trait for subject
i as

ỹi =µ+XT
i α+ZT

i β+ξT
i a+ζT

i d+εi, i=1,...,n, (2)

where µ is the overall mean, Xi is the d1-dimensional vector
of discrete covariates for subject i, α= (α1,...,αd1

)T is the
vector of regression coefficients for discrete covariates, Zi is
the d2-dimensional vector of continuous covariates for subject
i, β = (β1,...,βd2

)T is the vector of regression coefficients for
continuous covariates, a= (a1,...,ap)T and d= (d1,...,dp)T are the
p-dimensional vectors of the additive and dominant effects of SNPs,
respectively, ξ i and ζ i are the indicator vectors of the additive and
dominant effects of SNPs for subject i, and εi is the residual error
assumed to follow a N(0,σ2) distribution. The j-th elements of ξ i
and ζ i are defined as

ξij =
⎧⎨
⎩

1, if the genotype of SNP j is AA
0, if the genotype of SNP j is Aa

−1, if the genotype of SNP j is aa,

ζij =
{

1, if the genotype of SNP j is Aa
0, if the genotype of SNP jis AA or aa.

Despite p�n in the GWAS, most of the regression coefficients in
(2) are expected to have no or only weak effects on the phenotype.
To identify a few SNPs that may have notable effects and enhance
prediction performance, we put L1 lasso penalties on the sizes
of additive effects and the dominant effects and encourage sparse
solutions using

p∑
j=1

|aj|≤ t,
p∑

j=1

|dj|≤ t∗, fort ≥0,t∗ ≥0, (3)

where t and t∗ are a certain value chosen to penalize the additive
and dominant effects, respectively. Thus, parameters in Equation (2)
are estimated by the penalized least squares

1

2
||ỹ−µ−Xα−Zβ−ξa−ζd||2 +λ

p∑
j=1

|aj|+λ∗
p∑

j=1

|dj|, (4)

where ỹ= (ỹ1,...,ỹn)T , µ= (µ,...,µ)T , X = (X1,...,Xn)T , Z =
(Z1,...,Zn)T , ξ= (ξ1,...,ξn)T , ζ= (ζ 1,...,ζ n)T , and λ and λ∗ are
tuning parameters or lasso parameters that control the degrees of
shrinkage in the estimate of the genetic effects.

2.3 Bayesian hierarchical model and prior distributions
Noting the form of the L1-penalty term in (4), Tibshirani (1996)
suggested that lasso estimates can be interpreted as posterior mode
estimates when the regression parameters have independent and
identical Laplace (i.e. double-exponential) priors. Therefore, when
lasso penalties are imposed on the additive and dominant effects of
SNPs, the conditional prior for aj is a Laplace distribution with the
scale parameter σ/λ:

π(a|σ2)=
p∏

j=1

λ

2
√

σ2
e−λ|aj|/

√
σ2

, (5)

Similarly, the conditional Laplace prior for dj is

π(d|σ2)=
p∏

j=1

λ∗

2
√

σ2
e−λ∗|dj|/

√
σ2

. (6)

Since the Laplace distribution can be represented as a scale
mixture of a normal distribution with an exponential distribution
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(Andrews and Mallows, 1974), we have the following hierarchical
representation of the penalized regression model:

ỹ|µ,α,β,a,d,σ2 ∼Nn(µ+Xα+Zβ+ξa+ζd,σ2In),

α∼Nd1
(0,
α),

β ∼Nd2
(0,
β),

a|σ2,τ2
1 ,...,τ2

p ∼Np(0,σ2diag(τ2
1 ,...,τ2

p )),

τ2
1 ,...,τ2

p |λ∼
p∏

j=1

exp(
λ2

2
),

d|σ2,τ∗2
1 ,...,τ∗2

p ∼Np(0,σ2diag(τ∗2
1 ,...,τ∗2

p )),

τ∗2
1 ,...,τ∗2

p |λ∗ ∼
p∏

j=1

exp(
λ∗2

2
),

σ2 ∼π(σ2),

σ2,τ2
1 ,...,τ2

p ,τ∗2
1 ,...,τ∗2

p >0.

After integrating out τ2
1 ,...,τ2

p and τ∗2
1 ,...,τ∗2

p , the conditional
priors on a and d have the desired forms (5) and (6), respectively.
We assign conjugate normal priors to α and β because they are low
dimensional and not the parameters of interest. Finally, since the data
are usually sufficient to estimate µ and σ, we can use an independent,
flat prior π(µ)=1 for µ and a non-informative scale-invariant prior
π(σ2)=1/σ2 for σ2.

The tuning parameters of the ordinary lasso can be prespecified
by cross-validation, generalized cross-validation or the idea based
on Stein’s unbiased risk estimate. However, in the Bayesian lasso,
λ and λ∗ can be estimated along with other parameters by assigning
appropriate hyperpriors to them. This procedure avoids the choice of
lasso parameters and allows us to determine the amount of shrinkage
from the data. In particular, we consider the conjugate gamma priors
on λ2/2 and λ∗2/2,

π

(
λ2

2

)
∼Gamma(a,b),

π

(
λ∗2

2

)
∼Gamma(a∗,b∗).

where a, b, a∗ and b∗ are small values so that the priors
are essentially non-informative. With this specification, lasso
parameters can be treated similar to the other parameters and
estimated by the Gibbs sampler.

3 POSTERIOR COMPUTATION AND
INTERPRETATION

3.1 MCMC algorithm
We estimate the parameters by sampling from their conditional
posterior distributions through the MCMC algorithm. The joint

posterior distribution can be expressed as:

π(µ,α,β,a,τ2
1 ,...,τ2

p ,λ,d,τ∗2
1 ,...,τ∗2

p ,λ∗,σ2|ỹ)

∝ ∏n
i=1π(ỹi|·)π(µ)π(σ2)π(α)π(β)∏p

j=1π(aj|τ2
j )π(τ2

j |λ)π(λ)π(dj|τ∗2
j )π(τ∗2

j |λ∗)π(λ∗)

Two-level hierarchical modeling allows us to easily
derive the conditional posterior distributions of parameters
and hyperparameters, from which the Gibbs sampler
draws posterior samples. Conditional on the parameters
(a,d,τ2

1 ,...,τ2
p ,τ∗2

1 ,...,τ∗2
p ), the model is the standard linear

regression and, thus, the conditional posterior distributions of
(α,β,σ2) are

α|·∼Nd1

(

′
(∑n

i=1Xi(ỹi −µ−ZT
i β−ξT

i a−ζT
i d)

σ2

)
,
′

)
,

with 
′ =
(∑n

i=1XiX
T
i

σ2
+
−1

α

)−1

,

β|·∼Nd2

(

′′
(∑n

i=1Zi(ỹi −µ−XT
i α−ξT

i a−ζT
i d)

σ2

)
,
′′

)
,

with 
′′ =
(∑n

i=1ZiZ
T
i

σ2
+
−1

β

)−1

,

σ2|·∼ Inv−χ2

(
n,

1

n

n∑
i=1

(ỹi −µ−XT
i α−ZT

i β−ξT
i a−ζT

i d)2

)
.

Conditional on the parameters (τ2
1 ,...,τ2

p ,τ∗2
1 ,...,τ∗2

p ,α,β), the
model becomes the weighted linear regression, and thus the
conditional posterior distributions of (a,d) are

a|·∼N
(

A−1
a ξ(ỹi −µ−XT

i α−ZT
i β−ζT

i d),σ2A−1
a

)
,

with A−1
a =

(
ξξT +diag(τ2

1 ,...,τ2
p )−1

)−1
,

d|·∼N
(

A−1
d ζ(ỹi −µ−XT

i α−ZT
i β−ξT

i a),σ2A−1
d

)
,

with A−1
d =

(
ζζT +diag(τ∗2

1 ,...,τ∗2
p )−1

)−1
.

Moreover, the full conditional for τ2
1 ,...,τ2

p ,τ∗2
1 ,...,τ∗2

p are
conditionally independent, with

1

τ2
j

|·∼ Inverse-Gaussian

⎛
⎝
√√√√λ2σ2

β2
j

,λ2

⎞
⎠, j=1,...,p,

and

1

τ∗2
j

|...∼ Inverse-Gaussian

⎛
⎝
√√√√λ∗2σ2

β2
j

,λ∗2

⎞
⎠, j=1,...,p.

Finally, with the conjugate priors Gamma(a,b) and
Gamma(a∗,b∗), the conditional posterior distributions of the
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hyperparameters are gammas

λ2|·∼Gamma

⎛
⎝p+a,

p∑
j=1

τ2
j

2
+b

⎞
⎠,

and

λ∗2|·∼Gamma

⎛
⎝p+a∗,

p∑
j=1

τ∗2
j

2
+b∗

⎞
⎠.

An efficient Gibbs sampler based on these full conditionals
proceeds to draw posterior samples from each full conditional
posterior distribution, given the current values of all other
parameters and the observed data. This process continues until all
chains converge. We use the potential scale reduction factor R̂ to
access the convergence (Gelman and Rubin, 1992). Once R̂<1.1 for
all scalar estimands of interest, we continue to draw 15 000 iterations
to obtain samples from the joint posterior distribution.

3.2 Posterior interpretation
The proposed MCMC algorithm for our Bayesian lasso model
can provide posterior median estimates of the additive effects and
dominant effects of individual SNPs, while adjusting for the effects
of all other SNPs and covariates. Furthermore, using the posterior
samples of a, d, and the observed genotypes, we can calculate the
proportion of the phenotypic variance explained by a particular SNP,
i.e. heritability, by

h2
j =

2p̂1p̂0(âj +(p̂1 − p̂0)d̂j)2 +4p̂2
1p̂2

0d̂2
j

var(ỹ)
, j=1,...,p,

where p̂1 is the estimated allele frequency for A, and p̂0 is the
estimated allele frequency for a, âj is the median estimate of

the additive effect for SNP j and d̂j is the median estimate of
the dominant effect for SNP j. Since heritability estimates are
unitless, they could guide variable selection and identify SNPs that
have relatively large effects on the phenotype.

4 RESULTS

4.1 Worked example
We used the newly developed model to analyze a real GWAS
dataset from the FHS, a cardiovascular study based in Framingham,
Massachusetts, supported by the National Heart, Lung and Blood
Institute, in collaboration with Boston University (Dawber et al.,
1951). Recently, 550 000 SNPs have been genotyped for the entire
Framingham cohort (Jaquish, 2007), from which 418 males and
559 females were chosen for our data analysis. These subjects
were measured for body mass index (BMI) at different ages from
29 to 61 years. As is standard practice, SNPs with minor allele
frequency <10% were excluded from data analysis. The numbers
and percentages of non-rare allele SNPs vary among different
chromosomes and ranges from 4417 to 28 771 and from 64% to
72%, respectively.

In principle, our approach can handle an extremely large number
of SNPs at the same time. To save our computing time, however,
we use those SNPs that cannot be neglected according to a
simple single SNP analysis. We chose the phenotypic data of
BMI in a middle measure age of each subject for a single SNP

Fig. 1. The histograms of original and preconditioned BMI.

analysis, separately for males and females. Supplementary Figure S1
gives −log10 P-values for each SNP in the two sexes from
which 1837 SNPs with a −log10 P-value of >3.5 in at least
one sex was selected for Bayesian lassso analysis. Before this
analysis, we imputed missing genotypes for a small proportion of
SNPs (5.16%) according to the distribution of genotypes in the
population. A preconditional analysis with m=3 and θ=0.426 was
used to mitigate observational noise, leading to the preconditioned
phenotypes. Like original measures, the preconditioned BMI also
displays a normal distribution (Fig. 1), which meets the normality
assumption required by the new approach.

By treating the sex as a discrete covariate and age as a continuous
covariate, we imposed lasso penalties on the additive effects
a1,...,ap and dominant effects d1,...,dp to identify those SNPs
with notable effects on BMI. We employ the proposed MCMC
algorithms to estimate all parameters and implement variable
selection, where 
α =1, 
β =1 and all parameters in the conjugate
gamma hyperpriors are 0.1. In unreported tests, we find that the
posteriors are not sensitive to these prior specifications, as long as
a and b are small values so that the priors are relatively flat (Park
and Casella, 2008; Yi and Xu, 2008). Figure 2 plots the estimated
additive and dominant effects of each SNP after adjusting for the
effects of other SNPs and covariates. The heritability explained
by each SNP is shown in Figure 3. The Bayesian hierarchical
model automatically shrinks small coefficients to zero, and hence the
posterior estimates of a, d and h2

j can guide variable selection. We
claim that a genetic effect is significant if its 95% posterior credible
interval does not contain zero. Alternatively, Hoti and Sillanpaa
(2006) suggested to preset a threshold value, c, such that one SNP is
included into the final model if the heritability explained by this SNP
is greater than c. We usually report the SNPs with high heritabilities
and, thus, this threshold can be chosen on more subjective grounds.

Table 1 tabulates the names and positions of SNPs with the
heritability (h2

j ) greater than 0.5, as well as the estimated additive
effects and heritabilities. We do not report the estimated dominant
effects since they are relatively low in this example. The Bayesian
lasso tends to shrink small effects of genes into zero. Assuming that
a=d =0.4 for a SNP with allele frequencies of 0.5 in a population,
the additive and dominant variances explained by this SNP is
1
2 a2 =0.08 and 1

4 d2 =0.04, respectively. Thus, there is a possibility
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Fig. 2. Estimated additive (A) and dominant effects (B) of 1837 SNPs from
the Framingham heart study.

that the dominant effects are shrunk to a greater extent than the
additive effects if they are of similar size. This may partly explain
why the dominant effects estimated for significant SNPs are much
smaller than the additive effects.

The amount of shrinkage in the estimates of additive and dominant
effects are quantified by two hyperparameters λ and λ∗ determined
from the data. The posterior medians for λ and λ∗ are 54.474 and
54.523, respectively, with the 95% posterior intervals being [53.325,
55.626] and [53.359, 55.678], respectively. These suggest that the
tuning parameters for the additive and dominant effects can be
estimated precisely.

Since five significant SNPs are selected from chromosome 1, and
four from chromosome 10, we will further examine the correlations
among the significant SNPs from the same chromosome, as
suggested by a referee. The correlation matrix of five significant
SNPs from chromosome 1 is given by⎛

⎜⎜⎜⎜⎝
1.00 0.85∗ 0.86∗ −0.01 0.01
0.85∗ 1.00 0.78∗ −0.01 0.02
0.86∗ 0.78∗ 1.00 −0.04 0.02
−0.01 −0.01 −0.04 1.00 −0.84∗
0.01 0.02 0.02 −0.84∗ 1.00

⎞
⎟⎟⎟⎟⎠,

where star denotes significant correlations at the significance level
1%. Clearly, these SNPs can be classified into two groups, and within
each group, SNPs are highly correlated. The correlation matrix of

Fig. 3. Estimated additive (A) and dominant effects (B) based on 50
simulations.

four significant SNPs from chromosome 10⎛
⎜⎜⎝

1.00 0.53∗ 0.48∗ 0.30∗
0.53∗ 1.00 0.52∗ 0.53∗
0.48∗ 0.52∗ 1.00 0.45∗
0.30∗ 0.53∗ 0.45∗ 1.00

⎞
⎟⎟⎠

also suggested that these SNPs are closely linked to each other.

4.2 Computer simulation
The new approach is investigated through simulation studies. We
generate data according to the model (2) with µ=0, σ2 =10 and
n=500. For ease of simulation, ξij is derived from uij , where each uij
has a standard normal distribution marginally, and ρ=cov(uij,uik)=
0.1. Then, to mimic a SNP with equal allele frequencies, we set

ξij =
⎧⎨
⎩

1, uij >c
0, −c≤uij ≤c

−1, uij <−c,

where −c is the first quartile of a standard normal distribution.
Finally, ζij is derived from ξij . We assume that there are 1000 SNPs
from which 20 are significant for a phenotypic trait. The positions
and additive and dominant effects of individuals are given in Table 2.
It is assumed that the trait is measured at a subject-specific age,
following the data structure of the FHS.

520



[09:55 2/2/2011 Bioinformatics-btq688.tex] Page: 521 516–523

Lasso for GWAS

Table 1. Information about significant SNPs

Chromosome Name Position Additive Heritability (%)

1 ss66185476 8445140 0.15 0.74
1 ss66374301 8451728 0.19 1.36
1 ss66295856 8578082 0.20 1.35
1 ss66516012 198313489 −0.13 0.89
1 ss66364251 198321700 0.12 0.66
10 ss66311679 32719838 0.33 4.65
10 ss66293192 32903593 0.27 2.08
10 ss66303064 32995111 0.36 5.93
10 ss66128868 33407810 0.28 2.75
20 ss66171460 22580931 −0.13 0.78
22 ss66055592 23420006 0.33 5.13
22 ss66164329 23420370 0.37 6.70

Table 2. Genetic effects of 20 assumed SNPs for data simulation

Position Additive Position Dominant

100 1.2 50 1.2
200 1.2 150 1.2
300 1.2 250 1.2
400 0.8 350 0.8
500 0.8 450 0.8
600 0.8 550 0.8
700 0.4 650 0.4
800 0.4 750 0.4
850 1.2 850 1.2
900 0.8 900 1.2
950 1.2 950 0.8
1000 0.8 1000 0.8

Figure 3 gives the estimated additive and dominant genetic effects
of different SNPs over 50 simulations, and Figure 4 plots the
heritability explained by each SNP. It is clear that lasso penalties
shrink small genetic effects to zeros, resulting in sparse solutions
of the regression coefficients. In general, the 20 assumed SNPs
can be well identified and their additive and dominant effects well
estimated. Also, two hyperparameters λ and λ∗ whose influence
the degree of shrinkage can be well estimated. In Supplementary
Figure 2, the histograms of these two hyperparameters are shown.

Then, we carry out another simulation study to compare the
performance of preconditioned Bayesian lasso, Bayesian lasso
without preconditioning and the traditional single SNP analysis.
Without loss of generality, only the additive model is considered.
Specifically, we generate data on n=200 and p= 500 or 1000
according to the model (2), with µ=0, σ2 =10, ρ=0.1, aj =1 for
1≤ j≤20 and aj =0 for j>20.

We apply three methods to the 100 simulated datasets: single SNP
analysis (SSA), standard Bayesian lasso (B-lasso) and the Bayesian
lasso applied to the preconditioned response from supervised
principal components (PB-lasso). In single SNP analysis, we reject
the null hypothesis that the genetic effect of an individual SNP equals
to zero at the significance level of 5% with the FDR adjustment. For
the Bayesian lasso and preconditioned Bayesian lasso, we reject
the null hypothesis based on 95% Bayesian credible intervals. To

Fig. 4. Estimated heritability explained by each SNP based on 50
simulations.

ameliorate the bias of the parameter estimates introduced by lasso
penalties, we always refit the linear regression model without the
penalty term using only those SNPs selected by the model selection
procedure.

For each estimated genetic effect obtained from each method, we
calculate the average bias and empirical standard error over 100
simulations. Since the first 20 genetic effects are non-zeros with the
same true value, in Table 3 we report the average values over the
first 20 SNPs and over the rest of the SNPs separately. The standard
error of each average is in parentheses. In the column labeled ‘Aver.
Nonzeros’, we present the average number of non-zero coefficients
correctly identified to be non-zero, or the average number of zero
coefficients incorrectly estimated to be non-zero in 100 replications.
In the column ‘Proportion of Correct-fit’, we present the proportion
of replications that the exact true model was identified.

As can be seen from Table 3, the single SNP analysis tend to
overestimate the genetic effect, since when we test a SNP for the
association with the phenotype, we assume the genetic variation
is solely due to this particular SNP, and ignore the effects from
all other SNPs. Therefore, in terms of parameter estimates, model
selection methods that simultaneously estimate the genetic effects
associated with all SNPs outperform the traditional single SNP
analysis. In terms of variable selection, although preconditioned
Bayesian lasso has a slightly higher false positive rate due to
the preconditioning step, it greatly improves the probability of
correctly identifying regression coefficients with non-zero effects.
Moreover, as the number of SNPs gets larger, single SNP analysis
detected fewer important SNPs, since this method subjects to
severe multiple comparison adjustment. However, preconditioned
Bayesian lasso is still able to identify non-zero coefficients and zero
coefficients correctly in almost every simulation. Supplementary
Table 1 displays the simulation results when ρ=0.5, which are
consistent with our findings.

Since our method is from the Bayesian perspective and is based
on the Gibbs sampler, the computational time is relatively high.
For example, for each replicate in this simulation study, averagely
it takes 439 s when p = 1000 and 109 seconds when p = 500 on a
2.0 GHz PC.
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Table 3. Simulation results for three methods based on 100 simulations

Method Bias Empirical Aver. Proportion of
Standard Error non-zeros correct-fit

n=200,p=500, β1 – β20

SSA 4.17 1.99 16.62 0.08
(0.21) (0.19) (1.51)

B-lasso 0.07 0.34 18.28 0.18
(0.04) (0.02) (1.36)

PB-lasso 0.00 0.35 19.68 0.63
(0.03) (0.03) (0.65)

n=200,p=500, β21 – β500

SSA 0.44 0.43 0.78 0.46
(0.05) (0.07) (1.09)

B-lasso 0.00 0.04 0.95 0.42
(0.01) (0.01) (0.94)

PB-lasso 0.00 0.03 1.25 0.30
(0.01) (0.04) (0.73)

n=200,p=1000, β1 – β20

SSA 4.13 1.96 15.71 0.04
(0.18) (0.17) (2.73)

B-lasso 0.36 0.38 17.11 0.08
(0.06) (0.07) (2.69)

PB-lasso 0.00 0.36 19.24 0.51
(0.04) (0.03) (1.81)

n=200,p=1000, β21 – β1000

SSA 0.43 0.43 0.42 0.69
(0.04) (0.06) (0.84)

B-lasso 0.00 0.02 0.33 0.76
(0.01) (0.01) (0.18)

PB-lasso 0.00 0.02 1.17 0.56
(0.00) (0.01) (1.38)

5 DISCUSSION
When the number of predictors p is much larger than the number of
observations n, highly regularized approaches, such as penalized
regression models, are needed to identify non-zero coefficients,
enhance model predictability and avoid over-fitting (Hastie et al.,
2009). The L1 penalized regression or lasso is such one of the
most popular techniques. In this article, we presented a Bayesian
hierarchical model with lasso penalties to simultaneously fit and
estimate all possible genetic effects associated with all SNPs in
a GWAS, adjusting for both discrete and continuous covariates.
Lasso penalties are imposed on the additive and dominant effects,
and implemented by assigning double-exponential priors to their
regression coefficients. It shrinks small effects toward zero and
produces sparse solutions. In this framework, SNPs with significant
genetic effects can be identified more accurately.

We fit the model in a fully Bayesian approach, employing
the MCMC algorithm to generate posterior samples from the
joint posterior distribution, which can be used to make various
posterior inferences. Although computationally intensive, it is easy
to implement and provides not only point estimates but also
interval estimates of all parameters. The Bayesian lasso treats
tuning parameters as unknown hyperparameters and generates their
posterior samples when estimating other parameters. This technique

avoids the choice of tuning parameters, and automatically accounts
for the uncertainty in its selection that affects the estimation of
the final model. In contrast, standard lasso algorithms usually
select tuning parameters by K-fold cross-validation, which involves
partitioning the whole dataset and refitting the model many times.
This process may result in unstable tuning parameter estimates.

In order to improve the performance of lasso when p is greater
than n, preconditioning is considered before variable selection.
Preconditioning encourages the principal components of a reduced
design matrix to be highly correlated with the response, and thus in
most cases only the first or first few components tend to be useful for
prediction. It denoises the response variable so that variable selection
becomes more efficient. Our simulation demonstrated that when p
greatly exceeds n, preconditioned Bayesian lasso could successfully
identify almost all the SNPs with true genetic effects. By analyzing
real data, our approach is shown to produce biologically relevant
results. For example, the approach detected a significant SNP
ss66171460 at position 22580931 of chromosome 20 associated with
BMI. It is interesting to note that this SNP is within 500 kb of the
FOXA2 (Forkhead Box A2) gene, an important genetic variant that
regulates obesity (Wolfrum et al., 2003).

One simulation example of Paul et al. (2008) implies that, in the
context of GWASs, SNPs that are marginally independent of the
phenotype could be screened out by preconditioning, but can be
identified by standard variable selection techniques such as lasso or
Bayesian lasso. In theory, if SNPs are correlated with the phenotype
through marginal correlations, we believe the preconditioning step
is worthwhile to identify more important SNPs. However, in reality,
since different SNPs may display interactions, this approach may
not work perfectly. In any case, this two-step variable selection
procedure should always be advantageous over a single SNP
analysis, because we are always testing the marginal correlation
between the predictor and response when one SNP is analyzed at a
time.

Motivated by Tibshirani (1996), Park and Casella (2008)
developed the Bayesian lasso and demonstrated the diabetes data
(Efron et al., 2004) with p=10 and n=442. We applied the Bayesian
lasso to the high-dimensional regression problem, and improved it
by preconditioning. We have concentrated on the preconditioned
Bayesian lasso method for continuous trait in GWASs. The proposed
preconditioning procedure and MCMC algorithm can be readily
extended to survival data analysis and lasso penalized logistic
regression in case–control disease gene mapping. Also, we may look
for gene–gene interaction effects after identifying main effects, as
suggested by Wu et al. (2009). The model with a capacity to identify
epistatic interactions will enables geneticists to decipher a detailed
picture of the genetic architecture of a complex trait.
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